
Space-Time Crop and Attend: Improving 
Cross-Modal Video Representation Learning


Motivation

We improve audio-visual self-supervised learning in two ways 
unique to the spatio-temporal aspect of videos. First, for space, 
we show that spatial augmentations such as cropping do work 
well for videos too, but that previous implementations, due to the 
high processing and memory cost, could not do this at a scale 
sufficient for it to work well. To address this issue, we first 
introduce Feature Crop, a method to simulate such augmentations 
much more efficiently directly in feature space. Second, we show 
that as opposed to naive average pooling, the use of transformer-
based attention improves performance significantly, and is well 
suited for processing feature crops. Combining both of our 
discoveries into a new method, Space-Time Crop and Attend 
(STiCA) we achieve state-of-the-art performance across multiple 
video-representation learning benchmarks. In particular, we 
achieve new state-of-the-art accuracies of 67.0% on HMDB-51 
and 93.1% on UCF-101 when pre-training on Kinetics-400.
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Analysis

Code and pre-trained models:

Problems in Multi-Modal Video Contrastive Learning 

Within modal spatial 
invariance are not learned.

High-level temporal 
information is discarded.

Comparison to state-of-the-art
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Key Contributions: 

1. Feature-Crop Augmentation 

2. Transformer for Late Temporal Attention Modelling
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